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Abstract

Problems of analysis of symmetric, bell-shaped signals registered in a discrete form are considered. Fast and direct methods
for their processing are proposed on the basis of vanishing momentum wavelets. Unlike previous works, wavelets of higher
order are used extensively in these methods. A new wavelet feature is observed: the permanence of their relative square. It
makes possible to choose an optimal scale coefficient that is common for several wavelet-transforms. Numerical simulations
show the high accuracy of proposed algorithms comparable with the more laborious methods of a Gaussian fitting to discrete
measurements. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Analysis of signals registered in a discrete form is of importance for data processing in almost any field of
experimental physics (see, for example, [1–3]). In many important cases the signal form is symmetrical, bell-
shaped; in particular, a Gaussian is the most often used approximant due to many physical reasons [1,2,4]. The
problem is to evaluate parameters of such a discrete signal, i.e. its position, amplitude and also its half-width in
presence of noise, detector uncertainties and influence of other close signals. Rigid timing requirements inherent in
contemporary detectors demand to elaborate fast and direct methods for the signal parameter evaluations. Passing
through a detector a particle produces an electronic shower. Its bell-shape surface can be approximated by a 2D-
Gaussian,

N(x,y,A,x0, y0)=Aexp
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wherex0, y0 are the shower center coordinates, andA is the maximum amplitude. The shower half-widthsσx,σy
by corresponding axes are supposed to be known for the considered detector domain (or can be calculated from
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the known drift velocity). Due to the factorized view of (1) the problem usually is reduced to handle several 1D-
Gaussians,

g(x;A,x0)=Aexp
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. (2)

In such 1D presentation (2) a doublet of two overlapping signals can be approximated as

G(x;A,x1;B,x2)=Aexp
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In the process of registration a signal is to be discretized as a histogram{hk} on the interval(xbeg, xend),

hk = 1

τ

xk∫
xk−1

G(x;A,x1;B,x2) dx, (4)

wherexk = xbeg+ kτ , andτ is the bin width. Besides, an electronic noise gives a contribution to each histogram
bin. Noise values are, in principle, correlated, but according to the earlier study [8] we treat them as independent
normal variables with r.m.s. equal up to 10% of the mean amplitude. The weak signals are cut off on the
threshold depending on the maximum noise level. However, despite of noise thresholding, some background signals
contaminating useful signals can also appear above the threshold level.

Well-known restrictions of Fourier analysis motivated our interest to such a modern signal analysis mean as
wavelet-transform[5]. The wavelet transform of a signalf (x) is determined as

Wψ(a, b)f = 1√
Cψ

∞∫
−∞

1√|a|ψ
(
b− x
a

)
f (x) dx, (5)

with the normalizing constant

Cψ = 2π

∞∫
−∞

|ψ̃(ω)|2
|ω| dω <∞, (6)

whereψ̃(ω) is the Fourier transform of the waveletψ(x). The conditionCψ <∞ is, at the same time, the condition
of the waveletψ existence. It would be true, in particular, if the firstn− 1 momenta are equal to zero,

∞∫
−∞
|x|mψ(x) dx = 0, 06m< n. (7)

According to the Gaussian-like shape of our signals it is natural to choose, as basic wavelets, the family of
vanishing momentum wavelets(VMW), since they are generated by a Gaussian distribution function,

gn(x)= (−1)n+1 d
n

dxn
e−x2/2, n > 0. (8)

The VMW family is called so because the condition (7) always holds for it.
Two first of VMW are most known [5],

g1(x)=−x e−x2/2, g2(x)= (1− x2)e−x2/2

(the second one is also known as “the Mexican hat”).
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Fig. 1. Fig. 2.

Fig. 1. First four of VMWs.

Fig. 2. Their relative squares.

Nevertheless, we found that the power of the wavelet-analysis can be really extended, if we would use the higher
order VMW, in particular,

g3(x)= (3x − x3)e−x2/2, g4(x)= (6x2− x4− 3)e−x2/2.

The normalizing coefficients of these waveletsCgn are 2π(n− 1)!

2. VMW properties

Between useful VMW properties we stress two, which are related to the VMW derivatives and integrals,

dgn(x)

dx
=−gn+1(x),

x2∫
x1

gn(x)= gn−1(x1)− gn−1(x2). (9)

The most important VMW property consists in preserving their relative square, which we define as [6]

w(x)=
∫ x

0 |gn(x)|dx∫∞
0 |gn(x)|dx

. (10)

The first four of VMWs are shown in Fig. 1. As we have checked, the relative VMW squares calculated for the first
ten of VMWs are almost equal forming a specific narrow plait. One can see that clearly in Fig. 2 for the first four
VMWs. That is used below in Section 4 for the optimal choice of the dilation parameter.

It is a remarkable fact that the wavelet transformation of a Gaussian (2) looks as the corresponding wavelet.
Therefore, the general expression for thenth wavelet coefficient has the following form:

Wgn(a, b)g=
Aσan+1/2

√
(n− 1)!sn+1

gn

(
b− x0

s

)
,

where we denotes =√a2+ σ 2.
Thus all above-mentioned VMW features are valid also for the Gaussian wavelet-transform. In particular, at the

central pointx = x0 coefficients of odd VMWs,Wg1(a, x0)g andWg3(a, x0)g equal to zero, while coefficients of
even, symmetrical waveletsWg2(a, x0)g andWg4(a, x0)g obtain at this point their maximum (absolute) values,

Wg2(a, x0)g = Aσa
5/2

s3 , Wg4(a, x0)g =−
√

3

2
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s5 . (11)
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To present the wavelet coefficients of a doublet (3) of two Gaussians we use the simplifying normalization,

Wn(a, b)g= Wgn(a, b)g

wgn
, wgn =

Aσan+1/2

√
(n− 1)!sn+1

.

Then we obtain

Wgn(a, b)G=Agn
(
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s

)
+Bgn

(
b− x2

s

)
. (12)

3. Methods to estimate signal parameters

At this section we derive, first, VMW-based estimates of parameters for “ideal”, nondistorted,
non-histogrammed signals. These estimates give us the good basis for direct and, therefore, fast algorithms. How-
ever, in any real registration process various distortions are brought in. So we have then to study, how much these
distortions could influence on the wavelet-transform of such a distorted signal. Only on the basis of this study we
can propose recommendations for an optimal choice of shift and dilation VMW parameters, which would guarantee
the applicability of proposed algorithms.

Single Gaussian signal.For the single Gaussian signal we can calculate the wavelet transform in a few points and
solve the system of corresponding equations. However, applying the ratio of different wavelets we can eliminate the

exponente−(b−x2
0)/2(a

2+σ2) and obtain the signal position explicitly. For instance, the ratioWg3(a, b)g/Wg1(a, b)g

gives

x0= b±
√
(a2+ σ 2)

[
3+
√

2(a2+ σ 2)

a2

Wg3(a, b)g

Wg1(a, b)g

]
. (13)

The true sign in (13) is easy to choose when one would calculate the coefficientsWg3(a, b)g andWg1(a, b)g in a
point which is far enough from the supposed signal position.

The amplitude value can be evaluated via the value of the half-width of the signalσ (if known) and
one of expressions (11). But in the case when the value ofσ is unknown it can be also evaluated using
Wg2(a, x0)g/Wg4(a, x0)g,

σ 2=−a2
(

1+
√

3

2

Wg2(a, x0)g

Wg4(a, x0)g

)
. (14)

Again, the point in which the ratioWg2(a, b)g/Wg4(a, b)g is calculated, must be chosen as close to the signal
center as possible.

Doublet of close Gaussians.For a doublet of two close signals we can use either
– four first wavelets calculated in one point (method WTS – Wavelet Transform System);
– or one of those wavelets (we chooseg2) calculated in four different points (methodg2-WTS).
The corresponding systems of equations are
– for WTS:Fn =Wn(a, b)G−Wn(a, b)h= 0, n= 1,2,3,4;
– for g2-WTS:Fn =W2(a, bn)G−W2(a, bn)h= 0, n= 1,2,3,4;
where thenth wavelet coefficient of a histogramh,

Wn(a, b)h= sn+1
√

2πσan+1

N∑
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Fig. 3. R.m.s. of the wavelet-transformsWgn(a,0)ε versus the noise level.

is calculated from the source histogram only one time for all iterations.g2 in theg2-WTS method is taken in four
following points:b1= b− h/2, b2= b+ h/2, b3= b1− h, b4= b2+ h with specially chosenh.

Newton’s method is applied to solve these nonlinear systems,

D1X = F, X = (x1,x2,A,B)T, F= (F1,F2,F3,F4)
T,

whereD is the matrix of partial derivatives ofFn with respect to components ofX. The first approachX(0) is
obtained by a rough estimation of the signal parameters from the source histogramh (see, for example, [8]).
The next approach is obtained asX(1) = X(0) +1X and so on iteratively, unless a wanted accuracy is reached.
Calculations of the partial derivatives matrixD can be considerably simplified due to the above mentioned VMW-
feature (9).

4. Optimal choice of shift and dilation parameters

As we assume, the choice of VMW parameters should minimize the influence of various signal distortions.
Some results of a study of this influence are described below. Here we focused ourselves especially on the signal
distortion due to digitizing and its contamination by additive noise. A histogrammed signal can be considered as

h̃k = hk + εk, k = 1,N, (15)

wherehk is the nondistorted signal obtained according to (4) andεk is the noise addition. Therefore, wavelet-
coefficients should also consists of two parts,

Wgn(a, b)h̃=Wgn(a, b)h+Wgn(a, b)ε. (16)

To estimate quantitatively the effect of the second noise component, a numerical experiment was done with 1000
events imitating the contamination of a digitized signal by normally distributed random noiseε with the standard
deviationσnoise. The corresponding values of the r.m.s. ofWgn(a,0)ε are shown in Fig. 3.

The nondistorted Gaussian signal with the amplitudeA= 1, zero center andσ = 1.25 was then histogrammed
for different shift valuesb. The wavelet-transformsWgn(a, b)h, n = 1,2,3,4 of this signal as functions ofb
are depicted in Fig. 1. Comparing them with corresponding r.m.s. values from Fig. 3, one can see that even the
maximum wavelet coefficients of noise are two orders of magnitude less than wavelet-coefficientsWgn(a, b)h for
almost all values ofb except small, clearly distinctive areas for odd and even wavelets. That gives us the following
rule for optimal choosing of the shift parameterb:
– odd waveletsg1 andg3 must be calculated in points on signal tails;
– even waveletsg2 andg4 must be calculated in points situated as close to the signal center as possible.
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The rule to determine the optimal dilation parametera can be derived from the expression (10) for the invariant
relative squarew,

a = v
2

√
−1

2 ln(1−w), v = x2− x1, 0<w < 1. (17)

5. Simulations and results

The amazing insensitivity of wavelets to various signal distortions is widely known (see, for example,
D. Donoho’s article in [5]). However, it was necessary to test more in details the accuracy and efficiency of
proposed methods and the dependences of their results on such factors as (i) distanced = |x2 − x1|/σ between
two components of the doublet signal (3), (ii) noise level and bin shedding, (iii) detector granularity degree. We
use Monte Carlo simulations to fulfill this study. The data were simulated as follows. The Gaussian doublet (3)
with σ = 4 was simulated and histogrammed according to (4) with bin numberN and bin-size 1 as it is depicted
in Fig. 4(a) (N = 10) and Fig. 4(b) (N = 32). Both peak positions and amplitudes are randomly distributed (an
exponential distribution with the mean̄A was used to generate amplitudes. The single Gaussian signal (2) needed
to test the accuracy of the formula (14) was simulated in an analog way. Then discretized signals were distorted
by adding to the value in each histogram bin a noise value distributed by the normal or (optionally) by the uniform
distribution withσnoise= 0.1Ā.) Then weak signals with the amplitude less than 10% ofAmax were truncated.

(a) (b)

(c) (d)

Fig. 4. Effects of various granularity, contamination and thresholding. (a) Histogram of a doublet with low granularity (10 bins). (b) The same
signal, but discretized for 32 bins, then noise with 30% amplitude from the signal maximum is added to each histogram bin and cut-off is done
on the 10% level. (c) An overall view of the wavelet-spectrum of the discretized signal (a). It stays the same for higher granular, distorted and
cutoff signal (b). (d) High frequency part of spectrum for signal (b).
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(a) (b)

(c)

Fig. 5. Bin shedding effect: (a) the source signal is the same as in Fig. 4b (with 10% noise only), but three bins are lost from its histogram;
(b) wavelet-spectrum of this distorted signal; (c) high frequency part of spectrum.

Both methods WTS andg2-WTS were applied to estimate doublet parametersx1, x2,A,B. Calculating wavelet-
coefficients, we set up the dilation parametera according to (17) withw = 0.9 andv = 2|x̂2− x̂1|, wherex̂1, x̂2
are the estimates of position parameters obtained on the current iteration. The maximum number of iteration was
set to 10, but it was usually not more than 3–4.

Each point on the dependence plot was obtained by repeating the whole procedure 1000 times. This procedure
was implemented as a special WINDOWS-95 software package allowing to vary all simulation parameters and to
visualize calculated signals and spectra. Two examples of applying this package to study the influence of various
signal distortions on its VMW spectrum are presented in Fig. 4. 2D wavelet-spectra are depicted as gray-level
images ranging from black for minimum to white for maximum values. One can clearly see the striking robustness
of the VMW to the various signal distortions: only a relatively thin high-frequency layer of the spectrum is violated
while the rest of it looks as a spectrum of the nondistorted signal. As one can see in Fig. 5, a similar robustness was
developed when three bins of the histogram depicted in Fig. 4(b) were set to zero imitating a malfunctions of data
channels.

Results of r.m.s.-error dependence of the signal position estimation on the distance between two signal
components determined by WTS andg2-WTS methods are shown in Fig. 6, where distances are given in the
signal half-width units common for both components. Error values are given in bin-width. The first method has
better accuracy when the distance between two peaks in a doublet is less than 2σ , although when it approaches
1σ -distance, the accuracy decreases considerably for both methods. The relative r.m.s.-error of the estimateσ̂g
of the single Gaussian half-width grows linearly with random noise (in percent ofĀ) as σ̂g = 0.2σnoise+ 0.01.
Dependence of̂σg on detector granularity is presented in Fig. 7.
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Fig. 6. Fig. 7.

Fig. 6. R.m.s.-error dependences of signal position estimates on the distance between two signal components determined by WTS andg2-WTS
methods.

Fig. 7. R.m.s.-error dependences of the single Gaussian half-width estimate on detector granularity (bin number).

As one can see from the given examples, wavelet transform can develop even fine effects of asymmetry and
other signal deviations from an ideal Gaussian shape. We do not touch here questions of a quantitative estimations
of such deviations, since it would bring us to the different topic related to wavelet series expansion. One can
also indicate these deviations by calculating the third and the fourth momenta of the histogrammed signal. We
did not also compare here accuracies of the wavelet analysis and the Fourier approach, which is more familiar
for experimentalists, since it was already done in [7] for the problem of resolving doublets of close Gaussian
discretized signals. As it was shown there in a simplified condition, when the position of one of signals is fixed, the
r.m.s. of the wavelet estimation of the distance between both peaks is 20% better than of the Fourier method.

6. Conclusion

The direct formulae are derived to calculate location, amplitude and scale parameters for a single signal and
doublets of overlapped signals. Unlike our previous work [7], wavelets of higher order are used extensively in
these algorithms. The observed VMW features allows us to choose the optimal wavelet parameters. In particular,
the stability of the VMW relative square was found. It makes possible to choose the dilation parameter that is
common for several wavelet-transforms. Numerical simulations show the high accuracy of proposed algorithms is
comparable with the more laborious methods of a Gaussian fitting to discrete measurements [8]. This study was
very facilitated by developing a special user friendly software package for the visualization of simulated signals
and their 2D-wavelet spectra for any of the first six Gaussian wavelets.

Approaches published here and in our previous work [6] are already successfully used by some of the JINR
physicists [9], although for different purposes.
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